‘ ! ! . UCRL-PROC-231453

LAWRENCE
LIVERMORE
NATIONAL

e | ANAlyzing and Visualizing Whole
Program Architectures

T. Panas, D. Quinlan, R. Vuduc

June 4, 2007

ICSE Workshop on Aerospace Software Engineering (AeroSE)
Minneapolis, MN, United States
May 21, 2007 through May 22, 2007

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.

Analyzing and Visualizing Whole Program Architectures

Thomas Panas

Dan Quinlan

Richard Vuduc

Center for Applied Scientific Computing
Lawrence Livermore National Laboratory
{panas2, dquinlan, richie} @lInl.gov

1. Introduction

This paper describes our work to develop new tool sup-
port for analyzing and visualizing the architecture of com-
plete large-scale (millions or more lines of code) programs.
Our approach consists of (i) creating a compact, accurate
representation of a whole C or C++ program, (ii) analyzing
the program in this representation, and (iii) visualizing the
analysis results with respect to the program’s architecture.
We have implemented our approach by extending and com-
bining a compiler infrastructure and a program visualiza-
tion tool, and we believe our work will be of broad interest
to those engaged in a variety of program understanding and
transformation tasks.

We have added new whole-program analysis support to
ROSE [15, 14], a source-to-source C/C++ compiler infras-
tructure for creating customized analysis and transforma-
tion tools. Our whole-program work does not rely on pro-
cedure summaries; rather, we preserve all of the information
present in the source while keeping our representation com-
pact. In our representation, a million-line application fits
in well less than 1 GB of memory. Because whole-program
analyses can generate large amounts of data, we believe that
abstracting and visualizing analysis results at the architec-
ture level is critical to reducing the cognitive burden on the
consumer of the analysis results. Therefore, we have ex-
tended Vizz3D [19], an interactive program visualization
tool, with an appropriate metaphor and layout algorithm
for representing a program’s architecture. Our implemen-
tation provides developers with an intuitive, interactive way
to view analysis results, such as those produced by ROSE,
in the context of the program’s architecture.

The remainder of this paper summarizes our approach to
whole-program analysis (Section 2) and provides an exam-
ple of how we visualize the analysis results (Section 3).

2. Whole-Program Analysis

Our source code analysis and transformation work is part
of the ROSE project, sponsored by the U.S. Department of

Energy (DOE). Although research in the ROSE project em-
phasizes performance optimization, ROSE contains many
of the components and analyses common to any compiler
infrastructure, and thus facilitates the development of a
broad range of source-based analysis tools. ROSE routinely
compiles million-line applications. This section describes
our whole-program analysis implementation in ROSE.

2.1. Representing whole programs

Whole-program analysis is typically implemented ei-
ther using procedure summaries or by embedding infor-
mation into the object files to use whole-program context
at link-time. In ROSE, we approach the problem differ-
ently, namely, by using a space-efficient representation of
the complete source.

We use the Edison Design Group C++ front-end
(EDQG) [7] to parse C and C++ programs. EDG generates an
abstract syntax tree (AST) and fully evaluates all types. We
translate the EDG AST into our own object-oriented AST,
SAGEIII. The SAGEIII intermediate representation (IR) has
240 types of IR nodes and can fully represent original struc-
ture of the application, including the preservation of com-
ments and preprocessor control structure. From the IR, the
original source may be reproduced completely.

The IR is space-efficient by design. In particular, we
share parts of the AST (subtrees) that are determined to be
identical. This technique is critical for C and C++. For ex-
ample, a typical million-line application compiled by ROSE
has about 1000 files containing approximately 1,000 lines
of source code (LOC) per source file, where each source file
includes in addition about 75,000 LOC from header files. In
this scenario, the effective 76,000 LOC per source file gen-
erate 1,000 ASTs with each containing about 500,000 IR
nodes. To support whole-program analysis, ROSE merges
multiple ASTs from the compilation of different source files
into a single AST. Merging 75,000 re-occuring LOC over
each of the 1000 files saves 75 million LOC from being
represented redundantly in the AST.

Figure 1 (top) shows the AST for three example source

)
&=
- =
=,
(Sl
e D
[
@@ ©
J ©
R €
=
= &
E=.
oo
b Stes
=@
S ¢

S

Figure 1. (Top) AST before merging. File 1 = green nodes, File 2 = blue nodes, File 3 = red nodes.
(Bortom) AST after merging. The magenta subtree shows common (merged) structure.

files, with AST subtrees colored by file. The ASTs from the
files are not shared. Figure 1 (bottom) shows the AST af-
ter the merge process, where the diamond shaped IR nodes
of the AST indicate that those IR nodes are shared. To be
shared, the declaration at the root of the subtrees had to gen-
erate the same internal name (in C++, this includes standard
name mangling plus a number of other language specific de-
tails) and the subtrees had to pass the One-time Definition
Rule (ODR) test of equivalence. For a more detailed de-
scription of our merge algorithm, see our recent paper [14].

In our initial experiments, we have merged the full
source of SMG2000 [1], a semicoarsing multigrid code con-
sisting of 53 files. The ROSE AST initially consists of
2,287,000 nodes, and is merged into just 779,607 nodes.
This indicates a merge efficiency of 66%; the maximum
possible merge efficiency is 100%, which would occur
when merging two identical files.

We have estimated the theoretically best merge effi-
ciency for SMG2000 to be 77%. For this, we compare the
total amount of LOC in source and header files (including
library headers) with the LOC of the preprocessed source
files of SMG2000, embedding header files repeatedly into
the source files. The numbers are 31,628 LOC and 138,456
LOC, respectively (with empty lines removed). Finally, for
SMG2000, the time to merge all 2,287,000 nodes is about
30% of the time spent on the entire compilation process.

Using a 250 KLOC benchmark, we have estimated that

a 1,000 KLOC application will fit into approximately 400
MB of memory after merging header files. The AST hold-
ing the million-line application can also be saved to and
loaded from disk using a custom ROSE-specific binary file
format; on current single-processor desktop machines, one
of these binary files can be written in roughly 30 sec and
read in under a minute. Simple traversals (for code analysis
purposes) of the whole AST (in memory) are expected to
take only a few seconds.

2.2. Analysis

ROSE internally implements a number of forms of pro-
cedural and interprocedural analysis, with much of this
work in development. ROSE currently supports analyses
such as:

Metrics in order to measure certain aspects of a software
system to interactively or automatically evaluate design
specifications, such as LOC per function, function complex-
ity measures or arithmetic complexities. Arithmetic met-
rics help to detect computationally expensive functions and
classes. This property is particularly important in scientific
computing codes, since such functions should be the most
robust and reliable pieces of the software.

Static Analyses aid the analysis of a software sys-
tem without the system being executed. ROSE includes
e.g. analyses that detect public declared variables (within

the scope of classes) and global variables (outside the scope
of classes) and unsafe function calls that can lead to buffer
overflows, page faults, and segmentation faults (such as
sprintf, scanf, strcpy). ROSE supports also more
sophisticated analyses for system dependence, call graph,
control and data flow analysis. In collaboration with aca-
demic groups, we are extending the analysis infrastructure
to interface with general analysis tools, including PAG [2],
OpenAnalysis [17], as well as analysis tools specifically
for automated debugging and security, MOPS for finite
state machine-based temporal specification checking [4],
and coverage analysis tools [6].

Dynamic Analyses are used to attribute the ROSE AST
with runtime information. This allows us to detect and vi-
sualize program locations with high execution costs.

Binary Analysis is the analysis and inspection of pro-
gram binaries. We can represent binary information in the
ROSE IR in order to apply analysis mechanisms developed
for static source analysis to binaries as well.

We expect our approach towards whole program analysis
to be most valuable in terms of program analysis precision
and scalability; which, in turn, allows us also to experiment
with large scale application visualizations.

3. Architecture Visualization

The aim of architecture-level visualization is to rapidly
summarize and communicate the architecture and design
decisions of the overall software system. Architectural vi-
sualization is more abstract than low-level visualizations
(from low-level analyses) [13], and therefore better suited
to visualizations in the large. An architectural visualiza-
tions combined with metrics can help software developers
to answer many questions about a software system.

Common examples of architectural visualizations are
function call graphs, hierarchy graphs, and directory struc-
tures. There are many ways to present these graphs, such as
UML diagrams and graph browsers. For example, Figure 2
shows various analysis results within one image, in order to
reduce cognitive burden a viewer would otherwise experi-
ence when looking at multiple views [16]. However, this
image shows a huge amount of information, making tech-
niques for information reduction necessary.

To help a viewer better navigate and understand analy-
sis results of large-scale applications, we have implemented
a 3D city metaphor, a predictable layout, and abstraction
and navigation mechanisms within our visualization tool,
Vizz3D. We show an example of visualizing SMG2000 in
Figure 3. This image shows exactly the same information
as Figure 2, with the difference that a 3D city metaphor and
our predictible layout algorithm is used.

More specifically, Figure 3 is a snapshot taken of Vizz3D
while running SMG2000. The directories of this application

_testgml - yEd Graph Editor
File Edit View layout Tools Hierarchy Help

Lo aaalaEm ybo o)¢[BEEE »

st ol
hypre_SMCResidu|

Figure 2. Architecture Visualization Example.

appear as “islands,” individual files as “cities” within the
island, and individual function definitions as “buildings.” In
addition, aggregate shaded edges between cities indicates
that some function in one file (red end) calls some function
in another file (dark end). Other user-selected metrics and
analyses (whether static or dynamic) may be rendered as
textures, colors, and icons in this view. We believe that the
right choice of metaphor and layout are crucial, and we will
investigate this claim in future studies.

4. Related Work

Whole-program analysis has traditionally been applied
in performance optimization contexts [3, 18], but has re-
cently also been used to find bugs and detect security flaws
using global dataflow analyses [10, 11, 8]. Our techniques
complement earlier work by providing the basic infrastruc-
ture for accurately representing the source of an entire pro-
gram but for purposes of program understanding. Among
other open C or C++ infrastructures [9, 12, 5] and C++
static analysis infrastructures [20], our basic mechanisms
for building whole-program representations are unique.

Acknowledgements. This work was performed under the
auspices of the U.S. Department of Energy by University of
California, Lawrence Livremore National Laboratory under
Contract W-7405-Eng-48.

References

[1] The SMG2000 Benchmark, 2001.
lInl.gov/asci/platforms/purple/rfp/benchmarks/limited/smg.

(2]
(3]

(4]

(5]

(6]

(7]
(8]

(9]

[10]

(11]

[12]

File Edit MNavigation Layout Binding Environment Info

=g =]

OB H

7 Vizz3D - OpenGL (JOGL)

HO B AD e NOd® @@ FRIPS

F39 Memory usage: 21 MB #Nodes: 451 #Edges: 172

Figure 3. Our Architecture Visualization.

Abslnt, Inc. PAG: The Program Analysis Generator, 2006.
absint.com/pag.

D. C. Atkinson and W. G. Griswold. The design of whole-
program analysis tools. In Proc. International Conference
on Software Engineering, Berlin, Germany, March 1996.

H. Chen, D. Dean, and D. Wagner. Model checking one
million lines of C code. In Proc. Network and Distributed
System Security Symposium, San Diego, CA, USA, 2004.

S. Chiba. Macro processing in object-oriented languages.
In TOOLS Pacific 98, Technology of Object-Oriented Lan-
guages and Systems, 1998.

O. Edelstein, E. Farchi, E. Goldin, Y. Nir, G. Ratsaby, and
S. Ur. Testing multithreaded Java programs. IBM Systems
Journal: Special Issue on Software Testing, February 2002.
Edison Design Group. EDG front-end. edg. com.

D. Engler and M. Musuvathi. Static analysis versus soft-
ware model checking for bug finding. In Proc.International
Conference on Verification, Model Checking, and Abstract
Interpretation, Venice, Italy, 2004.

F. S. Foundation. = GNU Compiler Collection, 2005.
gcc.gnu.org.

S. Z. Guyer, E. D. Berger, and C. Lin. Detecting er-
rors with configurable whole-program dataflow analysis. In
Proc. Conference on Programming Language Design and
Implementation, Berlin, Germany, 2002.

D. L. Heine and M. S. Lam. A practical flow-sensitive
and context-sensitive C and C++ memory leak detector. In
Proc. Conference on Programming Language Design and
Implementation, pages 168—181, June 2003.

G. Keating. Inter-module analysis in GCC. In Proc. GCC
Developers’ Summit, Ottowa, Canada, June 2005.

[13]

(14]

(15]

(16]

(17]

(18]

[19]

[20]

T. Panas. Towards a Generic Framework for Reverse En-
gineering. Licentiate thesis, Vixjo University, Sweden,
November 2003.

D. Quinlan, R. Vuduc, T. Panas, J. Hirdtlein, and
A. Szbjgrnsen. Support for whole-program analysis
and verification of the One-Definition Rule in C++. In
Proc. Static Analysis Summit, Gaithersburg, MD, USA, June
2006. National Institute of Standards and Technology Spe-
cial Publication.

M. Schordan and D. Quinlan. A source-to-source architec-
ture for user-defined optimizations. In Proc. Joint Modular
Languages Conference, 2003.

M.-A. D. Storey, F. D. Fracchia, and H. A. Mueller. Cogni-
tive design elements to support the construction of a mental
model during software visualization. In Proc. of the 5th Int.
Workshop on Program Comprehension (WPC '97), Wash-
ington, DC, USA, 1997. IEEE Computer Society.

M. M. Strout, J. Mellor-Crummey, and P. D. Hovland.
Representation-independent program analysis. In ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for
Software Tools and Engineering, September 2005.

S. Triantafyllis, M. J. Bridges, E. Raman, G. Ottoni, and
D. I. August. A framework for unrestricted whole-program
optimization. In Proc. on Programming Language Design
and Implementation, Ottowa, Canada, June 2006.

Vizz3D. Available at: http://vizz3d.
sourceforge.net, July 2006.

D. Wilkerson. OINK: A collection of composable C++ static
analysis tools, 2005. freshmeat.net/projects/oink.

